Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 14.272
1.
CNS Neurosci Ther ; 30(5): e14744, 2024 05.
Article En | MEDLINE | ID: mdl-38727249

BACKGROUND: Stroke is an acute cerebrovascular disease in which brain tissue is damaged due to sudden obstruction of blood flow to the brain or the rupture of blood vessels in the brain, which can prompt ischemic or hemorrhagic stroke. After stroke onset, ischemia, hypoxia, infiltration of blood components into the brain parenchyma, and lysed cell fragments, among other factors, invariably increase blood-brain barrier (BBB) permeability, the inflammatory response, and brain edema. These changes lead to neuronal cell death and synaptic dysfunction, the latter of which poses a significant challenge to stroke treatment. RESULTS: Synaptic dysfunction occurs in various ways after stroke and includes the following: damage to neuronal structures, accumulation of pathologic proteins in the cell body, decreased fluidity and release of synaptic vesicles, disruption of mitochondrial transport in synapses, activation of synaptic phagocytosis by microglia/macrophages and astrocytes, and a reduction in synapse formation. CONCLUSIONS: This review summarizes the cellular and molecular mechanisms related to synapses and the protective effects of drugs or compounds and rehabilitation therapy on synapses in stroke according to recent research. Such an exploration will help to elucidate the relationship between stroke and synaptic damage and provide new insights into protecting synapses and restoring neurologic function.


Stroke , Synapses , Humans , Animals , Synapses/pathology , Synapses/metabolism , Stroke/metabolism , Stroke/pathology , Stroke/complications , Stroke/physiopathology
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731870

Transcranial magneto-acoustic stimulation (TMAS), which is characterized by high spatiotemporal resolution and high penetrability, is a non-invasive neuromodulation technology based on the magnetic-acoustic coupling effect. To reveal the effects of TMAS treatment on amyloid-beta (Aß) plaque and synaptic plasticity in Alzheimer's disease, we conducted a comparative analysis of TMAS and transcranial ultrasound stimulation (TUS) based on acoustic effects in 5xFAD mice and BV2 microglia cells. We found that the TMAS-TUS treatment effectively reduced amyloid plaque loads and plaque-associated neurotoxicity. Additionally, TMAS-TUS treatment ameliorated impairments in long-term memory formation and long-term potentiation. Moreover, TMAS-TUS treatment stimulated microglial proliferation and migration while enhancing the phagocytosis and clearance of Aß. In 5xFAD mice with induced microglial exhaustion, TMAS-TUS treatment-mediated Aß plaque reduction, synaptic rehabilitation improvement, and the increase in phospho-AKT levels were diminished. Overall, our study highlights that stimulation of hippocampal microglia by TMAS treatment can induce anti-cognitive impairment effects via PI3K-AKT signaling, providing hope for the development of new strategies for an adjuvant therapy for Alzheimer's disease.


Alzheimer Disease , Amyloid beta-Peptides , Microglia , Plaque, Amyloid , Animals , Microglia/metabolism , Mice , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Transcranial Magnetic Stimulation/methods , Acoustic Stimulation , Mice, Transgenic , Disease Models, Animal , Synapses/metabolism , Hippocampus/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Neuronal Plasticity , Long-Term Potentiation , Signal Transduction
3.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745307

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Encephalomyelitis, Autoimmune, Experimental , Interleukin-9 , Mice, Inbred C57BL , Microglia , Synapses , Tumor Necrosis Factor-alpha , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/chemically induced , Mice , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Interleukin-9/metabolism , Female , Tumor Necrosis Factor-alpha/metabolism , Synapses/drug effects , Synapses/metabolism , Synapses/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Membrane Glycoproteins/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/metabolism , Disease Models, Animal
4.
Cell ; 187(10): 2574-2594.e23, 2024 May 09.
Article En | MEDLINE | ID: mdl-38729112

High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.


Brain , Drosophila melanogaster , Microscopy, Electron , Neurons , Neurotransmitter Agents , Synapses , Animals , Drosophila melanogaster/ultrastructure , Drosophila melanogaster/metabolism , Neurotransmitter Agents/metabolism , Synapses/ultrastructure , Synapses/metabolism , Microscopy, Electron/methods , Brain/ultrastructure , Brain/metabolism , Neurons/metabolism , Neurons/ultrastructure , Neural Networks, Computer , Connectome , gamma-Aminobutyric Acid/metabolism
5.
Article En | MEDLINE | ID: mdl-38697654

A coordinated and complex interplay of signals between motor neurons, skeletal muscle cells, and Schwann cells controls the formation and maintenance of neuromuscular synapses. Deficits in the signaling pathway for building synapses, caused by mutations in critical genes or autoantibodies against key proteins, are responsible for several neuromuscular diseases, which cause muscle weakness and fatigue. Here, we describe the role that four key genes, Agrin, Lrp4, MuSK, and Dok7, play in this signaling pathway, how an understanding of their mechanisms of action has led to an understanding of several neuromuscular diseases, and how this knowledge has contributed to emerging therapies for treating neuromuscular diseases.


Neuromuscular Junction , Signal Transduction , Humans , Animals , Agrin/metabolism , LDL-Receptor Related Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Muscle Proteins/metabolism , Neuromuscular Diseases , Receptors, Cholinergic/metabolism , Synapses/physiology , Synapses/metabolism , Motor Neurons/physiology , Motor Neurons/metabolism
6.
Methods Mol Biol ; 2799: 139-150, 2024.
Article En | MEDLINE | ID: mdl-38727906

Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.


Patch-Clamp Techniques , Receptors, N-Methyl-D-Aspartate , Synapses , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Patch-Clamp Techniques/methods , Synapses/metabolism , Synapses/physiology , Brain/metabolism , Brain/cytology , Neurons/metabolism , Mice , Rats , Protein Subunits/metabolism
7.
Methods Mol Biol ; 2799: 257-267, 2024.
Article En | MEDLINE | ID: mdl-38727912

The NMDAR is a heterotetramer composed of two GluN1 subunits and two GluN2 and/or GluN3 subunits, with the GluN2 subunits exhibiting significant diversity in their structure and function. Recent studies have highlighted the importance of characterizing the specific roles of each GluN2 subunit across central nervous system regions and developmental stages, as well as their unique contributions to NMDAR-mediated signaling and plasticity. Understanding the distinct functions of GluN2 subunits is critical for the development of targeted therapeutic strategies for NMDAR-related disorders. However, measuring the functional contribution of individual GluN2 subtypes in ex vivo slices is challenging. Conventionally, pharmacological or genetic approaches are used, but, in many cases, this is not possible or is restricted to population-level NMDAR responses. Here, we describe a technique for using biophysical properties of miniature synaptic NMDAR responses as a proxy to measure the functional contribution of specific GluN2-NMDAR subunits to individual synapses within a neuron.


Protein Subunits , Receptors, N-Methyl-D-Aspartate , Synapses , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Animals , Synapses/metabolism , Protein Subunits/metabolism , Mice , Neurons/metabolism , Rats , Patch-Clamp Techniques/methods , Synaptic Transmission
8.
Methods Cell Biol ; 187: 139-174, 2024.
Article En | MEDLINE | ID: mdl-38705623

Array tomography (AT) allows one to localize sub-cellular components within the structural context of cells in 3D through the imaging of serial sections. Using this technique, the z-resolution can be improved physically by cutting ultra-thin sections. Nevertheless, conventional immunofluorescence staining of those sections is time consuming and requires relatively large amounts of costly antibody solutions. Moreover, epitopes are only readily accessible at the section's surface, leaving the volume of the serial sections unlabeled. Localization of receptors at neuronal synapses in 3D in their native cellular ultrastructural context is important for understanding signaling processes. Here, we present in vivo labeling of receptors via fluorophore-coupled tags in combination with super-resolution AT. We present two workflows where we label receptors at the plasma membrane: first, in vivo labeling via microinjection with a setup consisting of readily available components and self-manufactured microscope table equipment and second, live receptor labeling by using a cell-permeable tag. To take advantage of a near-to-native preservation of tissues for subsequent scanning electron microscopy (SEM), we also apply high-pressure freezing and freeze substitution. The advantages and disadvantages of our workflows are discussed.


Synapses , Tomography , Animals , Synapses/metabolism , Synapses/ultrastructure , Tomography/methods , Imaging, Three-Dimensional/methods , Staining and Labeling/methods , Mice , Microscopy, Electron, Scanning/methods , Fluorescent Dyes/chemistry , Microinjections/methods , Neurons/metabolism , Rats
9.
Methods Cell Biol ; 187: 57-72, 2024.
Article En | MEDLINE | ID: mdl-38705630

Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15µm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.


Hippocampus , Receptors, AMPA , Synapses , Animals , Mice , Hippocampus/metabolism , Hippocampus/cytology , Receptors, AMPA/metabolism , Synapses/metabolism , Synapses/ultrastructure , Membrane Proteins/metabolism , Gold/chemistry , Microscopy, Electron/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism
10.
Cereb Cortex ; 34(13): 121-128, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696601

Previous studies in autism spectrum disorder demonstrated an increased number of excitatory pyramidal cells and a decreased number of inhibitory parvalbumin+ chandelier interneurons in the prefrontal cortex of postmortem brains. How these changes in cellular composition affect the overall abundance of excitatory and inhibitory synapses in the cortex is not known. Herein, we quantified the number of excitatory and inhibitory synapses in the prefrontal cortex of 10 postmortem autism spectrum disorder brains and 10 control cases. To identify excitatory synapses, we used VGlut1 as a marker of the presynaptic component and postsynaptic density protein-95 as marker of the postsynaptic component. To identify inhibitory synapses, we used the vesicular gamma-aminobutyric acid transporter as a marker of the presynaptic component and gephyrin as a marker of the postsynaptic component. We used Puncta Analyzer to quantify the number of co-localized pre- and postsynaptic synaptic components in each area of interest. We found an increase in the number of excitatory synapses in upper cortical layers and a decrease in inhibitory synapses in all cortical layers in autism spectrum disorder brains compared with control cases. The alteration in the number of excitatory and inhibitory synapses could lead to neuronal dysfunction and disturbed network connectivity in the prefrontal cortex in autism spectrum disorder.


Membrane Proteins , Prefrontal Cortex , Synapses , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Humans , Male , Female , Synapses/pathology , Synapses/metabolism , Adult , Middle Aged , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/pathology , Young Adult , Adolescent , Child , Autistic Disorder/metabolism , Autistic Disorder/pathology , Neural Inhibition/physiology , Vesicular Glutamate Transport Protein 1/metabolism
11.
J Cell Biol ; 223(7)2024 Jul 01.
Article En | MEDLINE | ID: mdl-38695719

Microglia sense the changes in their environment. How microglia actively translate these changes into suitable cues to adapt brain physiology is unknown. We reveal an activity-dependent regulation of cortical inhibitory synapses by microglia, driven by purinergic signaling acting on P2RX7 and mediated by microglia-derived TNFα. We demonstrate that sleep induces microglia-dependent synaptic enrichment of GABAARs in a manner dependent on microglial TNFα and P2RX7. We further show that microglia-specific depletion of TNFα alters slow waves during NREM sleep and blunt memory consolidation in sleep-dependent learning tasks. Together, our results reveal that microglia orchestrate sleep-intrinsic plasticity of synaptic GABAARs, sculpt sleep slow waves, and support memory consolidation.


Microglia , Receptors, GABA-A , Sleep, Slow-Wave , Synapses , Tumor Necrosis Factor-alpha , Animals , Male , Mice , Memory Consolidation , Mice, Inbred C57BL , Microglia/metabolism , Neuronal Plasticity/physiology , Receptors, GABA-A/metabolism , Receptors, Purinergic P2X7/metabolism , Receptors, Purinergic P2X7/genetics , Signal Transduction , Sleep/physiology , Synapses/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Article En | MEDLINE | ID: mdl-38696595

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Dorsolateral Prefrontal Cortex , Proteomics , Humans , Child , Male , Female , Adult , Dorsolateral Prefrontal Cortex/metabolism , Child, Preschool , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Synapses/metabolism , Adolescent , Young Adult , Autistic Disorder/metabolism , Autistic Disorder/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Synaptosomes/metabolism , Prefrontal Cortex/metabolism , Post-Synaptic Density/metabolism
13.
Elife ; 122024 May 07.
Article En | MEDLINE | ID: mdl-38713200

The cytosolic proteins synucleins and synapsins are thought to play cooperative roles in regulating synaptic vesicle (SV) recycling, but mechanistic insight is lacking. Here, we identify the synapsin E-domain as an essential functional binding-partner of α-synuclein (α-syn). Synapsin E-domain allows α-syn functionality, binds to α-syn, and is necessary and sufficient for enabling effects of α-syn at synapses of cultured mouse hippocampal neurons. Together with previous studies implicating the E-domain in clustering SVs, our experiments advocate a cooperative role for these two proteins in maintaining physiologic SV clusters.


Hippocampus , Neurons , Protein Binding , Synapsins , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/chemistry , Animals , Synapsins/metabolism , Synapsins/genetics , Mice , Neurons/metabolism , Hippocampus/metabolism , Synaptic Vesicles/metabolism , Protein Domains , Cells, Cultured , Humans , Synapses/metabolism
14.
Sci Adv ; 10(18): eadm7039, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701209

Long-range glutamatergic inputs originating from the cortex and thalamus are indispensable for striatal development, providing the foundation for motor and cognitive functions. Despite their significance, transcriptional regulation governing these inputs remains largely unknown. We investigated the role of a transcription factor encoded by a high-risk autism-associated gene, FOXP1, in sculpting glutamatergic inputs onto spiny projection neurons (SPNs) within the striatum. We find a neuron subtype-specific role of FOXP1 in strengthening and maturing glutamatergic inputs onto dopamine receptor 2-expressing SPNs (D2 SPNs). We also find that FOXP1 promotes synaptically driven excitability in these neurons. Using single-nuclei RNA sequencing, we identify candidate genes that mediate these cell-autonomous processes through postnatal FOXP1 function at the post-synapse. Last, we demonstrate that postnatal FOXP1 reinstatement rescues electrophysiological deficits, cell type-specific gene expression changes, and behavioral phenotypes. Together, this study enhances our understanding of striatal circuit development and provides proof of concept for a therapeutic approach for FOXP1 syndrome and other neurodevelopmental disorders.


Corpus Striatum , Forkhead Transcription Factors , Neurons , Receptors, Dopamine D2 , Repressor Proteins , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Corpus Striatum/metabolism , Corpus Striatum/cytology , Mice , Neurons/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Phenotype , Synapses/metabolism , Synapses/physiology , Male
15.
Cell Metab ; 36(5): 1000-1012.e6, 2024 May 07.
Article En | MEDLINE | ID: mdl-38582087

The gut-brain axis is implicated in depression development, yet its underlying mechanism remains unclear. We observed depleted gut bacterial species, including Bifidobacterium longum and Roseburia intestinalis, and the neurotransmitter homovanillic acid (HVA) in individuals with depression and mouse depression models. Although R. intestinalis does not directly produce HVA, it enhances B. longum abundance, leading to HVA generation. This highlights a synergistic interaction among gut microbiota in regulating intestinal neurotransmitter production. Administering HVA, B. longum, or R. intestinalis to mouse models with chronic unpredictable mild stress (CUMS) and corticosterone (CORT)-induced depression significantly improved depressive symptoms. Mechanistically, HVA inhibited synaptic autophagic death by preventing excessive degradation of microtubule-associated protein 1 light chain 3 (LC3) and SQSTM1/p62 proteins, protecting hippocampal neurons' presynaptic membrane. These findings underscore the role of the gut microbial metabolism in modulating synaptic integrity and provide insights into potential novel treatment strategies for depression.


Depression , Gastrointestinal Microbiome , Homovanillic Acid , Mice, Inbred C57BL , Animals , Gastrointestinal Microbiome/drug effects , Mice , Depression/drug therapy , Depression/metabolism , Male , Humans , Homovanillic Acid/metabolism , Synapses/metabolism , Synapses/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Neurons/metabolism , Neurons/drug effects , Female
16.
Cells ; 13(8)2024 Apr 12.
Article En | MEDLINE | ID: mdl-38667286

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Cell Differentiation , Induced Pluripotent Stem Cells , Ischemic Stroke , Neural Stem Cells , Synapses , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neural Stem Cells/cytology , Ischemic Stroke/pathology , Ischemic Stroke/therapy , Rats , Synapses/metabolism , Male , Neurites/metabolism , Brain/pathology , Brain Ischemia/therapy , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Stroke/therapy , Stroke/pathology
17.
Neuropharmacology ; 252: 109940, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38570068

The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.


Arachidonic Acids , Encephalomyelitis, Autoimmune, Experimental , Endocannabinoids , Glycerides , Mice, Inbred C57BL , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Glycerides/metabolism , Mice , Endocannabinoids/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Synapses/drug effects , Synapses/pathology , Synapses/metabolism , Microglia/drug effects , Microglia/metabolism , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/metabolism
18.
Proc Natl Acad Sci U S A ; 121(18): e2314541121, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38657049

Recent evidence has demonstrated that the transsynaptic nanoscale organization of synaptic proteins plays a crucial role in regulating synaptic strength in excitatory synapses. However, the molecular mechanism underlying this transsynaptic nanostructure in inhibitory synapses still remains unclear and its impact on synapse function in physiological or pathological contexts has not been demonstrated. In this study, we utilized an engineered proteolysis technique to investigate the effects of acute cleavage of neuroligin-2 (NL2) on synaptic transmission. Our results show that the rapid cleavage of NL2 led to impaired synaptic transmission by reducing both neurotransmitter release probability and quantum size. These changes were attributed to the dispersion of RIM1/2 and GABAA receptors and a weakened spatial alignment between them at the subsynaptic scale, as observed through superresolution imaging and model simulations. Importantly, we found that endogenous NL2 undergoes rapid MMP9-dependent cleavage during epileptic activities, which further exacerbates the decrease in inhibitory transmission. Overall, our study demonstrates the significant impact of nanoscale structural reorganization on inhibitory transmission and unveils ongoing modulation of mature GABAergic synapses through active cleavage of NL2 in response to hyperactivity.


Cell Adhesion Molecules, Neuronal , Nerve Tissue Proteins , Synapses , Synaptic Transmission , Animals , Mice , Cell Adhesion Molecules, Neuronal/metabolism , Epilepsy/metabolism , Epilepsy/physiopathology , Epilepsy/pathology , Hippocampus/metabolism , Matrix Metalloproteinase 9/metabolism , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Proteolysis , Receptors, GABA-A/metabolism , Synapses/metabolism , Synaptic Transmission/physiology
19.
Proc Natl Acad Sci U S A ; 121(15): e2318041121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38568976

Stable matching of neurotransmitters with their receptors is fundamental to synapse function and reliable communication in neural circuits. Presynaptic neurotransmitters regulate the stabilization of postsynaptic transmitter receptors. Whether postsynaptic receptors regulate stabilization of presynaptic transmitters has received less attention. Here, we show that blockade of endogenous postsynaptic acetylcholine receptors (AChR) at the neuromuscular junction destabilizes the cholinergic phenotype in motor neurons and stabilizes an earlier, developmentally transient glutamatergic phenotype. Further, expression of exogenous postsynaptic gamma-aminobutyric acid type A receptors (GABAA receptors) in muscle cells stabilizes an earlier, developmentally transient GABAergic motor neuron phenotype. Both AChR and GABAA receptors are linked to presynaptic neurons through transsynaptic bridges. Knockdown of specific components of these transsynaptic bridges prevents stabilization of the cholinergic or GABAergic phenotypes. Bidirectional communication can enforce a match between transmitter and receptor and ensure the fidelity of synaptic transmission. Our findings suggest a potential role of dysfunctional transmitter receptors in neurological disorders that involve the loss of the presynaptic transmitter.


Receptors, Cholinergic , Synapses , Synapses/metabolism , Receptors, Cholinergic/metabolism , Synaptic Transmission/physiology , Motor Neurons/metabolism , Receptors, GABA-A/metabolism , gamma-Aminobutyric Acid/metabolism , Neurotransmitter Agents/metabolism , Cholinergic Agents , Receptors, Presynaptic
20.
EMBO Rep ; 25(5): 2348-2374, 2024 May.
Article En | MEDLINE | ID: mdl-38589666

Microglia sculpt developing neural circuits by eliminating excess synapses in a process called synaptic pruning, by removing apoptotic neurons, and by promoting neuronal survival. To elucidate the role of microglia during embryonic and postnatal brain development, we used a mouse model deficient in microglia throughout life by deletion of the fms-intronic regulatory element (FIRE) in the Csf1r locus. Surprisingly, young adult Csf1rΔFIRE/ΔFIRE mice display no changes in excitatory and inhibitory synapse number and spine density of CA1 hippocampal neurons compared with Csf1r+/+ littermates. However, CA1 neurons are less excitable, receive less CA3 excitatory input and show altered synaptic properties, but this does not affect novel object recognition. Cytokine profiling indicates an anti-inflammatory state along with increases in ApoE levels and reactive astrocytes containing synaptic markers in Csf1rΔFIRE/ΔFIRE mice. Notably, these changes in Csf1rΔFIRE/ΔFIRE mice closely resemble the effects of acute microglial depletion in adult mice after normal development. Our findings suggest that microglia are not mandatory for synaptic pruning, and that in their absence pruning can be achieved by other mechanisms.


Hippocampus , Microglia , Synapses , Animals , Microglia/metabolism , Synapses/metabolism , Mice , Hippocampus/metabolism , Hippocampus/cytology , Dendritic Spines/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Neuronal Plasticity , Neurons/metabolism , Glutamic Acid/metabolism
...